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Low-frequency sound propagation in a quasi- 
one-dimensional flow 
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A systematic low-frequency theory is developed for the propagation of one-dimensional 
sound waves in a variable-area duct. The mean flow in the duct is assumed to be 
isentropic, compressible, and one-dimensional. Two applications are made of the 
theory. One concerns the reflexion coefficient from a pipe-nozzle combination, in which 
case comparisons are also made with some experimental data. In  the second applica- 
tion, we consider the case of a sonic throat separating subsonic and supersonic flow. 
I n  this case, if the mean Mach number distribution in addition to being unity at the 
throat is also stationary a t  the throat, there is an axial ‘ boundary-layer ’region in which 
the impedance of the sound wave changes from a fundamentally unsteady (reflexion- 
free) value at the sonic throat to the quasi-steady value away from the throat. 

1. Introduction 
In  the present paper, we consider the propagation of one-dimensional sound waves 

in a mean flow described by the equations of isentropic, one-dimensional, compressible 
flow. The equations governing such linear acoustic waves were given by Tsien (1952) 
and solutions to these equations have been recently studied by Marble & Candel 
(1977), Bohn (1977)andDavis & Johnson (1974). InMarble (1973), ananalysisvalidfor 
vanishingly small frequency was developed for this class of problems. The purpose of 
the present analysis is to develop the O ( p )  correction to Marble’s work, where ,!l is an 
appropriate non-dimensional frequency parameter. As with the WKB high-frequency 
theory, the solution to O(p)  for arbitrary mean flow distributions is reduced to a simple 
quadrature. 

The motivation for this study arose originally from the discovery of an error in a 
treatment of this problem by Ffowcs Williams (1972). Having studied first the case 
where the mean flow distribution is entirely subsonic, the study was also extended to 
the case where a sonic throat is involved (a case considered by Tsien (1952) and Marble 
& Candel (1977)). If the axial derivative of the mean flow velocity is non-zero at  the 
sonic throat, the low-frequency theory can be carried through in a straightforward 
manner. An interesting singular-perturbation problem arises, however, in the case of 
a sonic throat a t  low frequencies if the derivative of the axial velocity also vanishes a t  
the sonic throat. I n  this case, the behaviour of the acoustic wave is fundamentally 
unsteady at  the sonic throat but it must be quasi-steady a short distance away from 
the nozzle throat. It turns out that there is a ‘boundary layer’ of axial extent 
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where n is order of the lowest non-vanishing derivative of the axial velocity a t  the sonic 
throat (n  2 2), over which the acoustic impedance of the sound wave undergoes a 
rapid transition. This boundary-layer behaviour cannot be anticipated from the work 
of Marble (1973). Neither can it be anticipated from the works of Marble & Candel 
(1977) or Tsien (1952) because these authors examined cases where the mean velocity 
distribution is assumed to be linear with axial distance so that, if the axial derivative 
of the mean velocity vanishes at one axial location, it vanishes everywhere and thus 
the flow degenerates to a uniform flow. It should be noted that, in the case of problems 
involving a sonic throat, the viewpoint of Tsien (1952) has been adopted (as in 
Marble & Candel 1977) regarding the acoustic impedance a t  the throat, namely that 
this impedance is assumed to have a value that ensures a bounded analytic solution a t  
the throat. 

Additionally, the utility of such quasi-one-dimensional acoustic calculations is 
illustrated by their ability to predict in some detail theexperimental dataof Inielmann 
(1978). While this agreement is encouraging, the analysis outlined in this paper is 
subject to the usual restrictions that pertain to all quasi-one-dimensional formulations 
of problems involving variable-area ducts. 

2. Problem formulation and low-frequency solution 
Consider a quasi-one-dimensional, isentropic, compressible steady flow in a variable- 

area duct. The steady pressure, density, temperature and axial velocity in the duct are 
given by the usual equations of quasi-one-dimensional flow provided the area variation 
is known. In  the case of a sonic throat, we assume that an accelerating flow is being 
considered, i.e. upstream of the throat the flow is subsonic and downstream of the 
throat it is supersonic. 

As shown by Tsien (1952), linear sound waves in such a flow are conveniently 
described by considering a non-dimensional pressure perturbation 

P’I(YPW) = # 
and a non-dimensional velocity perturbation 

where q5, v satisfy 
1’ = U ’ / U ( X ) ,  

d(v+ #)/dx = jw$/U 

and d(U2v + G2$)/dx = jwuv ,  (2) 

where Z is the steady speed of sound in the duct; j = .J - 1 ; p is the steady static 
pressure in the duct and p‘ the fluctuating (acoustic) pressure in the duct; ii is the 
steady axial velocity in the duct and u’ the fluctuating (acoustic) axial velocity in the 
duct; Z is the axial co-ordinate, y the specific heat ratio (taken as 1.4 in this paper) and 
w the oscillation frequency in radianslsecond (all oscillations taken as exp (-jut). 

The equations ( l ) ,  ( 2 )  can, of course, be readily integrated numerically, given initial 
vAues of #, v, and the several studies referred to earlier have in fact given many 
examples of such solutions. Since (1) and ( 2 )  are linear in q5, v, the absolute values of 
$, v are not of much interest and the most important initial value usually specified a t  
one axial location for the solution of ( I ) ,  (2) is the ratio #/v, which may be termed the 
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FIGURE 1. Sound transmission through a subsonic contraction. --, exact; 

_ _ _  , low-frequency approximation. a, is stagnation speed of sound. 

impedance of the wave a t  one axial location. Specification of such an impedance at  one 
location suffices to determine it everywhere else based on (i), ( 2 ) .  

For a low-frequency approximation, consider first the situation where the axial 
velocity distribution is subsonic everywhere. We non-dimensionalize all lengths by I, 
where I is a typical length scale over which a significant variation of the mean flow 
occurs (e.g. the duct length over which the area variation occurs), all velocities by a*, 
the ideal fluid velocity a t  the sonic point. With x, u, a denoting non-dimensional 
quantities corresponding to X, U and a, (1) and ( 2 )  become 

d(v + #)/dx = j P # / u  (3) 

and d(U2v + a2$)/dx = ~ P u v ,  (4) 

where p = wl/a". 

To construct the O(p)  approximation to (3), (4), we may proceed as follows. Let the 
ratio # / v  be specified at  one axial station, say x = 0. Since the absolute values of I$, 
v are not pertinent, we assume (without loss of generality) that (4 + v )  = 1 at z = 0. 
Knowing $ / v  a t  x = 0, we can compute #, v at x = 0 as #i, vi. Then we first derive the 
O(p0) (Marble 1973) approximation to #, v at x by solving the pair of linear simultaneous 
equations 

v+$  = 1,  ( 5 )  

( 6 )  u2v+a2# = {[Ai+ u ~ # ~ ]  a t  x = O] = 6 .  

f ( x )  = Qo/(u(#o+vo)) = # o h  

Let the solution to (5), (6) be denoted by #o, vo. Also let 
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and g(x) = uvo/(a2#,+u2v0) = uv,/b. 

it is clear that a solution to (3) and (4) involving only quadratures and to O ( p )  can be 
written as 

u2u+a2# = bexp jp q ( f ) d t  . (10) I !ox I 
Solving for 4, u from (9),  (lo), we obtain a solution to  O(p) to (3), (4) satisfying the 
proper initial conditions. In  (9) and (lo), the exponential terms can be expanded to 
O ( p )  as the approximation leading to  (9), (10) is no more accurate than to  O(p) .  

I n  figure 1, the solution to  an acoustic power transmission coefficient for the indicated 
flow is shown in amplitude (dB) and phase. Both the exact solution based on numeri- 
cally integrating (3) ,  (4) and the solution based on (9),  (10) are shown. It is seen that, 
up t o p  = 0-6, the low-frequency approximation of (9), (10) does afair job of predicting 
the exact result. Clearly in the problem of figure 1,  the #/v ratio would be taken 
specified at  the downstream end a t  the reflexion-free value of ad, where Md is the Mach 
number of the mean flow a t  the downstream end. For these calculations, the steady 
axial velocity distribution is assumed to vary linearly between the upstream and 
downstream uniform flow regions. Also for reference purposes, the expected linear 
phase variation from a high-frequency theory (leading term of a WKB approximation) 
is shown. 

3. Reflection coefficient for a low-frequency sound wave incident on a 
nozzle-jet flow termination 

We can apply the above results also to a problem illustrated in figure 2. This problem 
was considered by Ffowcs Williams ( 1972) but his treatment requires some correction. 
Following him, we assume that the exit end of the pipe behaves as an ‘open end’, i.e. 
that the acoustic pressure vanishes a t  this end. There are two respects in which we wish 
to improve upon the treatment of Ffowcs Williams. Firstly, for the fluctuating acoustic 
velocity, Ffowcs Williams uses a zero-frequency and low-Mach-number approximation 
to  (3).  The solution to (5), (6) for pr = 0 a t  the open end yields that $,/v0 is O ( M 2 )  and 
hence Ffowcs Williams approximates ( 5 )  by vo = constant and also uses this same 
approximation in integrating (8). There is, of course, no need to adopt either a low- 
Mach-number approximation or neglect O ( p )  corrections to v. Secondly, Ffowcs 
Williams linearizes a term ( y p / ( ( y -  1)p))  as ( yp ‘ / ( ( y -  1 ) p ) )  which is not correct 
because for acoustic waves (pr /p)  = (p‘ /p) /y  and, hence, the correct linearized form of 
( y p / ( ( y -  1 ) p ) )  is just (p‘/p) (called u2q5 in the current analysis). Note that p, p‘ denote 
the mean and fluctuating density and p = j5 + pr , 
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FIGURE 2. Reflexion of sound from a nozzle-jet flow termination. 

A straightforward use of (5)-( 10) (with g5 = 0) a t  the exit plane) yields the following 
expression for the reflexion coefficient (for the acoustic pressure). Let subscripts u, e be 
associated with upstream and exit quantities. Let M denote the Mach number of the 
steady flow and define two integrals of the steady flow as 

Bechert (1979) has pointed out one extraordinary consequence of (13). Considering the 
zero frequency limit of (13), we can see that, if the steady flow field is such that 
(a,-, - u,") = 0, then a t  the upstream end (at vanishingly small frequencies) the nozzle- 
jet system will appear anechoic (i.e. R = 0). At low Mach numbers (u,u,-u," = 0) 
would require that Me = A,/A,, where A,, A ,  denote the exit and upstream flow 
areas. As Bechert (1979) further points out, Imelmann (1978) has verified experi- 
mentally this remarkable prediction of (13). 

Pursuing this matter further, we show, in figure 3, a detailed theory-data comparison 
with the data of Imelmann (1978). The assumptions of the theoretical predictions are: 

(i) The acoustic pressure fluctuation is assumed to be zero a t  the pipe exit. 
(ii) The quasi-one-dimensional theory yields results as a function of /l (taken in 

figure 3 as wlla,, where a, is the stagnation speed of sound). Imelmann (1978) gives 
results as a function of (wRt/ao), where Rt is the tube radius. To compare the two it is 
suggested that we assume that 1 = R,. The length 1 is the axial distance over which the 
interior parallel flow in the tube changes to the exterior parallel flow in the jet. This 
estimate may be justified as follows. The interior flow may be modelled as a sink flow 
induced by a sink a t  the centre of an axisymmetric pipe. Assuming incompressible, 
potential flow the velocity potential CP can be expressed as 

a, 

CD = uux + Cexp (a,x/Rt) C,Jo(a,r/Rt), 
1 
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where a, are the successive zeros of J,(a) = 0 (a1 = 3.83 and ccn > ctl for n > 2). Hence 
over an axial distance equal to  R,, the non-parallel flow effects have decayed to about 
2 %(exp( -3.83)) of their value at the pipe exit. Thus 1 = Rt seems a reasonable 
estimate. 

(iii) Since Imelmann's data covers a frequency range of more than 10 to 1 ,  the 
theoretical curves shown in figure 3 were calculated by numerical integration of the 
exact linear system of (3), (4), assuming the steady axial velocityto vary linearlyfrom 
inlet to exit. However, calculations based on the low-frequency approximation (13) 
were also carried out. These results were in better agreement with the data in figure 3 
for p = 0.14 and 0.4 than the results of the exact calculation and (as might be expected) 
in worse agreement for p = 0.8 and 1.6. 

It appears from figure 3 that  the quasi-one-dimensional acoustic theory does an 
excellent job of predicting the variations of the reflexion coefficient with flow and 
frequency. If a data point falls within a factor of 1.26-0.79 of a prediction of an 
acoustic power ratio, the decibel error is within a dB and on this basis even the 
quantitative aspects of the theory-data agreement of figure 3 are most satisfactory. 
Apparently the assumption of zero exit acoustic pressure is quite reasonable. This 

FIGURE 3. Acoustic reflexion coefficient from a pipe-nozzle flow. Data (Imelmann 1978) for the 
following wR,/a,,: a, 0.14; A, 0.4; m, 0.8; V, 1.6. The area ratio A J A ,  = 0.132. 
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result is perhaps due to the fact that (wRe/ao) for the range of Imelmann’s experiments 
is less than 0.582 and the Levine-Schwinger (1948) no flow, unflanged pipe solution 
would indicate IRI 2 0.85 at the pipe exit (zero acoustic pressure corresponds to 
1RI = 1 )  for such values of (wR,/a,). Clearly the assumption of zero exit acoustic 
pressure will deteriorate for large values of P. 

4. Converging-diverging nozzles with a sonic throat 
This is the problem that has been considered in detail by Tsien ( 1  952) and Marble & 

Candel (1977) for the special case when the steady axial velocity distribution in the 
nozzle is linear. For the rest of the paper, u’ denotes du/dx and not the fluctuating 
acoustic velocity. 

First in (3), (4) if we set y = (v + $) it can be shown that y satisfies the linear, second- 
order equation 

(1 -M2)u(uyI)’ = M2{(y+ l)uu’y’-2j/3Uy’-2jpu’y-p2y}, (14) 

while (3) implies that 
jP$ = uy’, v = (y - $1. 

(In (la)-( 16)) primes denote differentiation with respect to x.) 
For (14), the location of the sonic throat ( M  = 1 )  constitutes at  least a regular 

singular point (if M’ = 0 at the sonic throat, the throat location is an irregular singular 
point) and Tsien’s argument is that for a regular solution ($/v) must have a unique 
value at the sonic throat determined by setting M = 1, u = 1 in (14), (15)) and (16) to 
vield 

at  the sonic throat (assumed to be at  x = 0). 
On the other hand, consider the implications of the conservation laws for (v + $), 

(u2u + a”) a t  zero frequency as expressed by (5) and (6) when a sonic throat is involved. 
At  a sonic throat 

@ + $ I  = (u2v+a2$) 

(since u = a = 1 at the sonic throat) and hence (using subscripts zero to denote the zero 
frequency approximation) 

vo + $o = u2vo + (everywhere). (18) 

Thus 

as long as u, a + 1 (i.e. away from the sonic throat) since the energy equation for the 

Comparison of (17) (which is an exact consequence of the existence of a regular solution 
at  M = 1 (x = 0) of (14)) and (19) shows that if u’(0) is of order unity and not a small 
quantity (in particular not zero), the zero frequency expansion of (17 )  gives the same 
value, 2(y- l)-l, for $/v (to 0(/30)) as (19) (see Marble 1973). 
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Thus, if u’(0) + 0, the low-frequency expansion procedure for problems involving 
a sonic throat requires solution of a regular perturbation problem and differs little from 
the procedure already discussed except that the impedance ratio q5/v must be taken as 
(17) specified at  the sonic throat to ensure a regular solution. As Tsien (1952), Marble & 
Candel(l977) and Marble (1973) have noted, the upstream (subsonic) and downstream 
(supersonic) computations are uncoupled in this case, both being initiated from the 
sonic throat using (17). Normalizing the value of (q5+v) at the throat to be unity 
(without loss of generality), it is clear that the scheme of equations (5)-(10) can be 
adopted with 

$4 = (2u’(O) -jP)/((r + 1) u’(0) - 2jP) 

vi = ((Y - 1) ~ ‘ ( 0 )  - jP ) / (  (Y + 1) ~ ‘ ( 0 )  - 2 jPt .  and 

Also $0 = 2/(Y+ 1)  and ”0 = (7- 1 ) / ( Y + 1 )  
(independent of 5). 

In  § 3 of Jacques (1975), it is suggested that ‘Doppler contraction’ effects will render 
inadmissible a low-frequency approximation near a sonic throat. On the other hand, 
Marble (1973) conjectured that such a restriction on the admissibility of a low- 
frequency approximation was ‘probably over severe ’. Since the p = 0 limit of (17) and 
(19) are perfectly compatible, the present results clarify that it is Marble’s conjecture 
that is correct in general. There is one circumstance, however, in which Jacques’ sug- 
gestion has some merit which we now address. 

Consider now the rather more interesting case where, in addition to a sonic throat at  
x = 0, u’(0) is also zero there. Even at low frequencies now, comparison of (17) (with 
u’(0) = 0 )  and (19) (which is certainly valid away from the sonic throat) reveals that 
($/v) must change rapidly from the reflexion-free value of unity at the sonic throat to 
the quasi-steady value of 2(y - 1)-l away from the throat. That the value of ( $ / u )  must 
be unity (to ensure a regular solution) at the sonic throat in this case is made plausible 
from the argument that with M’ = 0 simultaneously a t  M = 1 the sonic flow condition 
a t  x = 0 is more extensive than with M’ + 0. 

The appropriate uniiform2y valid low-frequency approximation for ($/v) in this case 
can be readily deduced from (14). The left-hand side of (14) (by (15)) can be written as 

jp( 1 - M z )  uq5‘ = left-hand side of (14). (21 )  

Now, away from the sonic throat, the expression on the left-hand side in (21) is small 
because (at vanishingly small frequencies) q5 N 2(y - I)- l  N constant and hence $’ = 0. 
Similarly close to the sonic throat, it is small because (1 -N2) is small. Hence, we 
deduce that an appropriate low-frequency approximation can be found simply by 
taking the right-hand side of (14) to be zero and using (15), (16) to express 9, v in terms 
of y. Thus we arrive at 

as the appropriate uniformly valid O(Po) estimate. 
The expression (22 )  clearly exhibits the requisite boundary-layer behaviour. If 

u(n)(O)is the least non-vanishing derivative of u ( x )  at x = 0 (with n >, 2) ,  (22)  shows that 
the axial extent of the transition layer in which (q5/v) changes from a reflexion-free to 
a quasi-steady value is of O(/31/(n-1)). 
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FIUURE 4. (a,  b, c) Sound propagation in axisymmetric nozzle sketched in (d). (a )  B = 0.1, 
( b )  /3 = 0.3, (c) /3 = 0-75. -, exact; - - -, low-frequency approximation. (d )  Axisymmetric 
nozzle radius corresponding to the calculations of (a), ( b )  and (c). 

To compute the O ( p )  correction to  9, v we proceed now in the usual manner. 
Normalizing (4 + v) to be unity a t  x = 0 (sonic throat location), di, vi would be 0.5 each 
(with u’(0) a t  x = 0). q50, vo would be 

(2U’W - - N / ( ( Y  + 1) U’(X) - 2ja) 

((7 - 1) u’(4 -jP)/UY + 1) U‘W - 2 . m  and 

The solution to O(p)  would be obtained from (9)) (10) with b = 1, f(z) = #o/u and 

If this peculiar feature of the case with u‘(0) = 0 a t  M = 1 is ignored (i.e. we take 
q50 = 2(y + 1)-1 and vo = (y  - 1) (y + l)-l), two consequences ensue. Firstly, of course, 

g(x)  = UV0. 
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the boundary-layer region of O(P'/(n-l') in the zeroth-order solution would be missed. 
Secondly, however, precisely because the error in the zeroth-order solution is confined 
to a region of O(P'/(fi-')), it is clear from (7 ) ,  (8) that, in the case of computation of $, 
v away from the throat (e.g. in computing the reflexion coefficient of a sound wave 
incident from the subsonic side upon a sonic throat with u'(0) = O),  the error involved 
will be of O(/3n/(n-1)). Thus for instance, in cases of computation of such a reflexion 
coefficient, if n = 2, the error will be of O(P2), which is also the order of the error 
involved in using (22). However, if n = 3, whereas the approach based on (22) will still 
yield an error of O(p2), one based on (19) would yield an error of O(p4). Thus for n 2 3, 
an  approach based on (22) rather than (19) in addition to yielding the boundary-layer 
structure also yields a better estimate (i.e. with an error of O(P2)) for quantities such 
as a reflexion coefficient. 
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In  figure 4, plots of r$ in amplitude and phase (relative to the sonic-throat location) 
are shown for a nozzle whose Mach-number distribution is given by 

M = ( 1  + 0.91xZsgn (x)): 

for p = 0.1, 0.3 and 0.75. Since the sonic throat uncouples the subsonic and supersonic 
regions of the flow, only the calculations for the subsonic region (x < 0) are shown. The 
low-frequency approximation based on (22) is also shown. Also the axisymmetric 
nozzle shape corresponding to the assumed Mach-number distribution is shown as 
part of figure 4. The ‘exact’ solution in figure 4 is based on seeking a regular solution 
to (14) by a numerical scheme. 

The low-frequency approximation is seen to be adequatealmost up top  = 0.75. Both 
calculations show the transition region (which broadens with p)  over which 161 changes 
from 0.5 (at the sonic throat) to approximately 2(y + l)- l(0.83 in the present case since 
y is taken as 1.4 throughout this paper). The argument of r$ at  very low frequencies 
would be expected to be zero at both ends of the transition region. 

5.  Concluding remarks 
The principal purposeof the present paper has been the development of a systematic 

theory to O(p)  for low-frequency sound propagation in a quasi-one-dimensional flow. 
The principal results are contained in equations (9), (10) to be used with (5), (6) or (19) 
or (22). 

The two most noteworthy results of the study are the ability of quasi-one-dimensional 
acoustics to explain the data of Imelmann (1978) and the elucidation of the axial 
‘boundary layer’ structure in the case of the derivative of the steady axial velocity 
vanishing at  a sonic throat. 
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